Senin, 05 Oktober 2015

MANFAAT DAN DAMPAK NEGATIF DARI KECERDASAN BUATAN MANUSIA BAGI DUNIA BISNIS



Istilah kecerdasan buatan sebenarnya berasal dari bahasa Inggris: “Artificial Intelligence”. Jika diartikan tiap kata, artificial artinya buatan, sedangkan intelligence adalah kata sifat yang berarti cerdas. Jadi artificial intelligence maksudnya adalah sesuatu buatan atau suatu tiruan yang cerdas. Cerdas di sini kemungkinan maksudnya adalah kepandaian atau ketajaman dalam berpikir, seperti halnya otak manusia dalam menyelesaikan suatu masalah.

Secara awam kecerdasan buatan diterjemahkan sebagai sebuah sistem saraf, atau sensor atau otak yang diciptakan oleh sebuah mesin. Sebenarnya kecerdasan buatan merujuk kepada mesin yang mampu untuk berpikir, menimbang tindakan yang akan diambil, dan mampu mengambil keputusan seperti yang dilakukan oleh manusia.

Alan Turing, ahli matematika berkebangsaan Inggris yang dijuluki bapak komputer modern dan pembongkar sandi Nazi dalam era Perang Dunia II tahun 1950, dia menetapkan definisi Artificial Intelligent : Jika komputer tidak dapat dibedakan dengan manusia saat berbincang melalui terminal komputer, maka bisa dikatakan komputer itu cerdas, mempunyai intelegensi.

Kecerdasan buatan itu sesuatu yang diciptakan oleh manusia, untuk menggantikan manusia. Jadi bisa jadi kecerdasan buatan itu merupakan suatu ancaman.

Walau pun menyadari bahwa kecerdasan buatan bisa jadi adalah suatu ancaman untuk manusia, tapi manusia masih saja mengembangkan apa yang disebut dengan kecerdasan buatan. Manusia masih saja mencoba mengembangkan / mendapatkan sesuatu (teknologi) yang baru, yang dapat berpikir seperti manusia.

Hal ini terjadi karena adanya ketidakpuasan dalam diri manusia, manusia ingin mendapatkan sesuatu dengan cara yang lebih mudah. Lagipula memang ada keterbatasan-keterbatasan dalam diri manusia, seperti otak manusia yang hanya mampu berpikir dengan frekuensi kira-kira 100 Hz dan karena manusia mempunyai rasa capai. Bandingkan dengan komputer sekarang yang mampu mengolah data dengan frekuensi 4 GHz. Komputer juga tidak mempunyai rasa capai walau pun harus mengolah data yang sama berulang-ulang.

Walaupun terasa sangat futuristik dan terlihat berbahaya, karena mesin nantinya akan memiliki kecerdasan dan emosi, para pakar AI menganggap pengembangan disiplin ilmu ini penting karena bisa diterapkan di Internet nantinya. Misalnya saja, di masa mendatang ketika Anda mengunjungi sebuah situs agen perjalanan, maka di layar komputer akan muncul wajah seorang wanita yang sangat sempurna karena semuanya berupa ciptaan komputer.

Uniknya, Anda akan mampu bercakap-cakap dengan wanita artifisial ini, seperti layaknya Anda berbicara dengan staff wanita beneran di counter biro perjalanan. Kalau ini tercapai, maka pelayanan dapat diberikan 100% online, dengan akurasi yang sangat tinggi. Terutama dari konsistensi, keramahan, kecepatan dan akurasi pelayanan. Lain kalau kita menggunakan staff manusia asli yang konsistensinya tidak bisa akurat karena terpengaruh kepada kondisi fisik dan emosi saat itu.

Saat ini sudah banyak teknologi kecerdasan buatan yang dihasilkan dan dipakai oleh manusia. Misalnya saja pada robot Asimo yang bisa menari dan berjalan, atau pada permainan komputer yang dirancang untuk membuat manusia berpikir keras untuk mengalahkannya. Contoh lain ada di industri otomotif. Adanya teknologi komputer yang mampu mengolah data dengan cepat dipakai untuk memberikan peringatan pada pengemudi mobil untuk menghindari terjadinya tabrakan.

Banyak hal yang kelihatannya sulit untuk kecerdasan manusia, tetapi untuk Informatika relatif tidak bermasalah. Seperti contoh: mentransformasikan persamaan, menyelesaikan persamaan integral, membuat permainan catur atau Backgammon.

Di sisi lain, hal yang bagi manusia kelihatannya menuntut sedikit kecerdasan, sampai sekarang masih sulit untuk direalisasikan dalam Informatika. Seperti contoh: Pengenalan Obyek/Muka, bermain sepak bola.

Walaupun AI memiliki konotasi fiksi ilmiah yang kuat, AI membentuk cabang yang sangat penting pada ilmu komputer, berhubungan dengan perilaku, pembelajaran dan adaptasi yang cerdas dalam sebuah mesin. Penelitian dalam AI menyangkut pembuatan mesin untuk mengotomatisasikan tugas-tugas yang membutuhkan perilaku cerdas.

Termasuk contohnya adalah pengendalian, perencanaan dan penjadwalan, kemampuan untuk menjawab diagnosa dan pertanyaan pelanggan, serta pengenalan tulisan tangan, suara dan wajah. Hal-hal seperti itu telah menjadi disiplin ilmu tersendiri, yang memusatkan perhatian pada penyediaan solusi masalah kehidupan yang nyata. Sistem AI sekarang ini sering digunakan dalam bidang ekonomi, obat-obatan, teknik dan militer, seperti yang telah dibangun dalam beberapa aplikasi perangkat lunak komputer rumah dan video game.

'Kecerdasan buatan' ini bukan hanya ingin mengerti apa itu sistem kecerdasan, tapi juga mengkonstruksinya.Tidak ada definisi yang memuaskan untuk 'kecerdasan': 
 
kemampuan untuk memperoleh pengetahuan dan menggunakannya atau kecerdasan yaitu apa yang diukur oleh sebuah 'Test Kecerdasan':
  • FahamPemikiran
  • Sejarah
  • Filosofi
  • Fiksisains
Secara garis besar, AI terbagi ke dalam dua faham pemikiran yaitu AI Konvensional dan Kecerdasan Komputasional (CI, Computational Intelligence). AI konvensional kebanyakan melibatkan metoda-metoda yang sekarang diklasifiksikan sebagai pembelajaran mesin, yang ditandai dengan formalisme dan analisis statistik. Dikenal juga sebagai AI simbolis, AI logis, AI murni dan AI cara lama (GOFAI, Good Old Fashioned Artificial Intelligence).

Metoda-metodanya meliputi:
Sistem pakar: menerapkan kapabilitas pertimbangan untuk mencapai kesimpulan. Sebuah sistem pakar dapat memproses sejumlah besar informasi yang diketahui dan menyediakan kesimpulan-kesimpulan berdasarkan pada informasi-informasi tersebut.

Pertimbangan berdasar kasus jaringan Bayesian AI berdasar tingkah laku:

metoda modular pada pembentukan sistem AI secara manual
Kecerdasan komputasional melibatkan pengembangan atau pembelajaran iteratif (misalnya penalaan parameter seperti dalam sistem koneksionis. Pembelajaran ini berdasarkan pada data empiris dan diasosiasikan dengan AI non-simbolis, AI yang tak teratur dan perhitungan lunak. 

Metoda-metoda pokoknya meliputi:

Jaringan Syaraf: sistem dengan kemampuan pengenalan pola yang sangat kuat.  Sistem Fuzzy: teknik-teknik untuk pertimbangan di bawah ketidakpastian, telah digunakan secara meluas dalam industri modern dan sistem kendali produk konsumen. 

Komputasi Evolusioner: menerapkan konsep-konsep yang terinspirasi secara biologis seperti populasi, mutasi dan “survival of the fittest” untuk menghasilkan pemecahan masalah yang lebih baik.

Metoda-metoda ini terutama dibagi menjadi algoritma evolusioner (misalnya algoritma genetik) dan kecerdasan berkelompok (misalnya algoritma semut).

Dengan sistem cerdas hibrid, percobaan-percobaan dibuat untuk menggabungkan kedua kelompok ini. Aturan inferensi pakar dapat dibangkitkan melalui jaringan syaraf atau aturan produksi dari pembelajaran statistik seperti dalam ACT-R. Sebuah pendekatan baru yang menjanjikan disebutkan bahwa penguatan kecerdasan mencoba untuk mencapai kecerdasan buatan dalam proses pengembangan evolusioner sebagai efek samping dari penguatan kecerdasan manusia melalui teknologi.

Pada awal abad 17, René Descartes mengemukakan bahwa tubuh hewan bukanlah apa-apa melainkan hanya mesin-mesin yang rumit. Blaise Pascal menciptakan mesin penghitung digital mekanis pertama pada 1642. Pada 19, Charles Babbage dan Ada Lovelace bekerja pada mesin penghitung mekanis yang dapat diprogram.

Bertrand Russell dan Alfred North Whitehead menerbitkan Principia Mathematica, yang merombak logika formal. Warren McCulloch dan Walter Pitts menerbitkan “Kalkulus Logis Gagasan yang tetap ada dalam Aktivitas ” pada 1943 yang meletakkan pondasi untuk jaringan syaraf.

Tahun 1950-an adalah periode usaha aktif dalam AI. Program AI pertama yang bekerja ditulis pada 1951 untuk menjalankan mesin Ferranti Mark I di University of Manchester (UK): sebuah program permainan naskah yang ditulis oleh Christopher Strachey dan program permainan catur yang ditulis oleh Dietrich Prinz.

 John McCarthy membuat istilah “kecerdasan buatan ” pada konferensi pertama yang disediakan untuk pokok persoalan ini, pada 1956. Dia juga menemukan bahasa pemrograman Lisp. Alan Turing memperkenalkan “Turing test” sebagai sebuah cara untuk mengoperasionalkan test perilaku cerdas. Joseph Weizenbaum membangun ELIZA, sebuah chatterbot yang menerapkan psikoterapi Rogerian.

Selama tahun 1960-an dan 1970-an, Joel Moses mendemonstrasikan kekuatan pertimbangan simbolis untuk mengintegrasikan masalah di dalam program Macsyma, program berbasis pengetahuan yang sukses pertama kali dalam bidang matematika. Marvin Minsky dan Seymour Papert menerbitkan Perceptrons, yang mendemostrasikan batas jaringan syaraf sederhana dan Alain Colmerauer mengembangkan bahasa komputer Prolog. 

Ted Shortliffe mendemonstrasikan kekuatan sistem berbasis aturan untuk representasi pengetahuan dan inferensi dalam diagnosa dan terapi medis yang kadangkala disebut sebagai sistem pakar pertama. Hans Moravec mengembangkan kendaraan terkendali komputer pertama untuk mengatasi jalan berintang yang kusut secara mandiri.

Di dalam ilmu komputer, banyak ahli yang berkonsentrasi pada pengembangan kecerdasan buatan atau Artificial Intelligence (AI).

Banyak implementasi kecerdasan buatan dalam bidang komputer, antara lain adalah Decision Support System (Sistem Pendukung Keputusan), Robotic, Natural Language (Bahasa Alami), Neural Network (Jaringan Saraf) dan lain-lain.

Pengertian kecerdasan buatan yaitu suatu studi khusus di mana tujuannya adalah membuat komputer berpikir dan bertindak seperti manusia.

Contoh bidang lain pengembangan kecerdasan buatan adalah sistem pakar yang menggabungkan pengetahuan dan penelusuran data untuk memecahkan masalah yang secara normal memerlukan keahlian manusia. Tujuan dari pengembangan sistem pakar sebenarnya bukan untuk menggantikan peran manusia, tetapi untuk mensubstitusikan pengetahuan manusia ke dalam bentuk sistem, sehingga dapat digunakan oleh orang banyak.

Manfaat kecerdasan buatan yang diimplementasikan dalam pengembangan sistem pakar adalah :
  • Memberikan penyederhanaan solusi untuk kasus-kasus yang kompleks dan berulang-ulang.
  • Masyarakat awam non-pakar dapat memanfaatkan keahlian di dalam bidang tertentu tanpa kehadiran langsung seorang pakar.
  • Meningkatkan produktivitas kerja, yaitu bertambah efisiensi pekerjaan tertentu serta hasil solusi kerja.
  • Penghematan waktu dalam menyelesaikan masalah yang kompleks.
  • Memungkinkan penggabungan berbagai bidang pengetahuan dari berbagai pakar untuk dikombinasikan.
  • Pengetahuan dari seorang pakar dapat didokumentasikan tanpa ada batas waktu.
4.       Dampak Negatif Kecerdasan Buatan
Ø  Sempitnya lapangan kerja.
Ø  Mentalitas teknologi, hal ini tercermin pada kepercayaan yang berlebihan pada alat (teknosentris), seolah-olah segala sesuatu dapat dipecahkan oleh teknologi dan sesuatu akan lebih meyakinkan kalau dilakukan dengan peralatan dan disertai angka-angka.
Ø  Krisis teknologi, berbagai krisis yang melanda dunia abad ini terutama disebabkan oleh perkembangan teknologi yang terlalu cepat, sehingga proses adaptasi dan integrasi tidak p dilakukan. Akibatnya terhadap individu ialah technostress, penyakit urban, penyakit peradaban
Ø  Habisnya sumberdaya
Ø  Timbulnya cuaca extrim diakibatkan industri mesin merajalela.
Ø  Pencemaran lingkungan
Ø  Beban lebih informasi, ligkungan informasi juga akan menimbulkan problem karena pertumbuhannya yang sangat cepat, melampui daya serap dan daya olah manusia.



REFERENSI :

1 komentar: